Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3420UB0-1

THURSDAY, 25 MAY 2023 - MORNING

PHYSICS – Unit 2: Forces, Space and Radioactivity

HIGHER TIER

1 hour 45 minutes

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	7	
2.	13	
3.	7	
4.	6	
5.	9	
6.	16	
7.	22	
Total	80	

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 4.

Equations	
speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
distance travelled = area under a velocity-time graph	
resultant force = mass × acceleration	F = ma
weight = mass \times gravitational field strength	W = mg
work = force × distance	W = Fd
kinetic energy = $\frac{\text{mass} \times \text{velocity}^2}{2}$	$KE = \frac{1}{2} mv^2$
change in potential energy = mass × gravitational field × change in strength × height	PE = mgh
force = spring constant \times extension	F = kx
work done in stretching = area under a force-extension graph	$W = \frac{1}{2} Fx$
momentum = mass × velocity	p = mv
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
u = initial velocity	v = u + at
v = final velocity	$x = \frac{u+v}{2}t$
t = time	$ \sum_{n=1}^{2} \frac{1}{n!} \frac{1}{n$
a = acceleration	$x - ul + \overline{2} ul$
x = displacement	$v^2 = u^2 + 2ax$
moment = force \times distance	M = Fd

SI multipliers

Prefix	Symbol	Conversion factor	Multiplier
pico	р	divide by 1000000000000	1×10^{-12}
nano	n	divide by 1000000000	1 × 10 ⁻⁹
micro	μ	divide by 1000000	1 × 10 ⁻⁶
milli	m	divide by 1000	1×10^{-3}
centi	С	divide by 100	1 × 10 ⁻²
kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1 × 10 ⁶
giga	G	multiply by 1000000 000	1 × 10 ⁹
terra	Т	multiply by 1000000000000	1 × 10 ¹²

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3420UB01 03

		adioactive source		ounter letector	
		absorber			
(a)	The teacher expla Complete the risk	ins that there is a pos assessment below.	sibility of expo	osure to radiation from the so	ource. [2]
	Hazard	Risk		Control measure	
	Nuclear radiation is ionising				
(b)	After the experime source, cobalt-60 The data are give	ent the teacher gives t to analyse. n in the table below.	he students s	ome data about the radioact	ive
	A	bsorber	C(counts	ount rate	
	no	absorber	(000110	256	
		paper		256	
	alı	uminium		110	
		leau		50	
	Use the data to ar (i) Explain how	nswer the following qu the data show that co	estions. obalt-60 does	not emit alpha particles.	[1]

	-	
(ii)	Explain how the data show that cobalt-60 emits beta and gamma radiation.	[2]
······		
(iii)	The teacher tells the class that counts due to background radiation are includ the results in the table.	ed in
	I. State one cause of background radiation.	[1]
	II. State how the results in the table should be corrected for background radiation.	[1]
		7
		over
00	© WJEG GBAG LTd. (3420080-1)	

]	Examiner
	(iii)	I. Explain how the resultant force on the car changes as it speeds up.	[2]	only
		II. State how this change in resultant force affects the acceleration of the	car. [1]	
(C)	At th with	e bottom of the slope the car continues horizontally at a constant speed of 12 r a kinetic energy of 72000 J.	n/s	
	(i)	State one reason why the potential energy at the top of the hill must have bee greater than 72000 J.	en [1]	
	(ii)	At the bottom of the hill a braking force is applied which stops the car over a distance of 15 m.		3420UB01 07
		Use the equation: force = $\frac{\text{work done}}{\text{distance}}$		
		to calculate the braking force.	[2]	
		braking force =	N	
				13

(a)	State	e how long light takes to travel from Alpha Centauri to Earth.	[1]
		time =	
(b)	(i)	Explain, in terms of named forces, why Alpha Centauri is currently stable.	[2]
	(ii)	Explain, in terms of named forces, the next stage in the life of Alpha Centauri.	[2]
(c)	Expl	ain why the mass of hydrogen present in Alpha Centauri will decrease as it gets r.	[2]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3420UB01 09

PMT

				Examine
				6
			T	
1.1	© WJEC CBAC Ltd.	(3420UB0-1)	IU	ni over.

Examiner

5. Some students carry out an experiment to determine the relationship between the force applied to a spring and its extension. They use the following apparatus.

They collect data by loading and then unloading the spring. Their results are shown in the table below.

Maga (g)		Extensi	on (cm)
Mass (g)	FOICE (N)	Loading	Unloading
0	0	0.0	0.0
100	1	4.4	4.2
200	2	8.9	9.3
300	3	13.6	13.7
400	4	18.2	18.5
500	5	22.5	22.5

(a) The uncertainty in extension is given by:

uncertainty in extension = $\frac{\text{maximum value of extension} - \text{minimum value of extension}}{2}$

(i) State the mass with the greatest uncertainty in extension.

[1]

value of mass = g

	(ii) Calculate this uncertainty.	[2]	Examin only
	uncertainty =	cm	
(b)	Suggest how the students could adapt the apparatus to reduce the uncertainty in th results.	eir [1]	
(c)	Explain how they could use all of the results to determine a mean value for the sprin constant.	ng [3]	
(d)	The students determine the spring constant to be 22.3 N/m. The true value of the spring constant is 22.2 N/m. Explain what this tells the students about their data.	[2]	
			9

Element	Symbol	Number of protons in the nucleus	Number of neutrons in the nucleus
uranium	U	92	143
caesium	Cs	55	85
rubidium	Rb	37	55
b) (i) Explain	the purpose of the mod	erator in a fission reactor.	[2]
b) (i) Explain (i)	the purpose of the mode	erator in a fission reactor. can be increased in a nucl	[2] ear reactor. [3]

			Ex	aminer
(C)	The The At tir The	caesium isotope produced in this fission reaction has a half-life of 64 s. rubidium isotope has a half-life of 4 s. ne, $t = 0$ the mass of caesium present is 131072 g. same mass of rubidium is also present.		Uniy
	(i)	Calculate the mass of caesium present after 64 s.	[1]	
		mass of caesium =	g	
	(ii)	I. Calculate how many half-lives of rubidium occur in 64 s.	[1]	
		number of half-lives =		
		II. After 32 seconds, 512 g of rubidium remains. Calculate the mass of rubidium remaining after 64 s.	[3]	
		mass =	g	
	(iii)	Initially the ratio of mass of caesium to mass of rubidium was 1:1. Explain how this ratio changes with time.	[2]	
				16

(1)	Co	mplete the following	ng table.		[4]
nitial spee (km/h)	d	Initial speed (m/s)	Thinking distance (m)	Braking distance (m)	Stopping distance (m)
60					
(ii)	Usi	ing the information	in the table, calculate	e the thinking time	of the driver. [3]
				thinking time	= s
(iii)	Use	e the equation:	2 2 . 2		
	200	d the information in	$v^2 = u^2 + 2ax$	the deceleration of	f the cor [3]
	und				
				deceleration = .	m/s ²
(c) The	e char refore	t shows that a car collides with the o	travelling faster than bstacle.	60 km/h will not stop	o in time and
(i)	Exp col	plain, in terms of N lision.	ewton's 1st Law, how	seat belts provide p	protection during a [2]
······					
······					

	 (ii) Explain, in terms of Newton's 3rd law, why the car and the obstacle are damaged during a collision. [2] 	Examiner only
	(iii) Explain, in terms of Newton's 2nd law, why cars have crumple zones. [2]	
(d)	The Royal Society for the Prevention of Accidents (RoSPA) says that "The majority of pedestrian casualties (in the UK) occur in built-up areas: 22 of the 26 child pedestrians and 264 of the 372 adult pedestrians who were killed in 2017, died on roads in built-up areas." They strongly feel that reducing the speed limit in built-up areas from 50 km/h to 35 km/h would greatly improve these accident statistics. Explain whether you agree with RoSPA. [3]	
		22
	END OF PAPER	
18	© WJEC CBAC Ltd. (3420UB0-1)	

Examine only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
]
		·
	······	
		J

